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Abstract. The geometric structure and bonding properties of medium-sized ArnH+ clusters (n = 2–35),
in which a proton is wrapped up in a number of Ar atoms, are investigated by applying a diatomics-
in-molecules (DIM) model with ab-initio input data generated by means of multi-reference configuration-
interaction (MRCI) computations. For the smaller complexes, n = 2–7, cross-checking calculations employ-
ing the coupled-cluster approach (CCSD) with the same one-electron atomic basis set as for the input data
calculations (aug-cc-pVTZ from Dunning), show good agreement thus justifying the extension of the DIM
study to larger n. Local minima of the multi-dimensional potential-energy surfaces (PES) are determined
by combining a Monte-Carlo sampling followed, for each generated point, by a steepest-descent optimiza-
tion procedure. For the electronic ground state of the ArnH+ clusters, the global minimum (corresponding
to the most stable structure of the cluster) as well as secondary minima are found and analyzed. The struc-
tural and energetic data obtained reveal the building-up regularities for the most stable structures and
make it possible to formulate a simple increment scheme. The low-lying excited states are also calculated
by the DIM approach; they all turn out to be globally repulsive.

PACS. 31.15.Ar Ab initio calculations – 31.50.Bc Potential energy surfaces for ground electronic states –
31.50.Df Potential energy surfaces for excited electronic states – 36.40.-c Atomic and molecular clusters –
36.40.Wa Charged clusters – 36.40.Qv Stability and fragmentation of clusters

1 Introduction

Positively charged clusters of the type RgnM+, where Rg
denotes a rare-gas atom and M some atom or diatomic
molecule, have become the subject of increasing research
activity in the recent two decades (for general informa-
tion see, e.g., [1, 2]). The reasons for this interest are of
various kinds. First of all, compared with their neutral
counterparts, the ionic clusters show some peculiarities:
they have special electronic structure and bonding prop-
erties in consequence of different interactions between the
constituent atoms, ranging from genuine strong covalent
bonds to weak van-der-Waals interactions, all this within
a single aggregate and depending also on the electronic
state. These features are closely related to the possibil-
ity of charge delocalization which is, however, limited to
some well-defined parts of the clusters. This leads to char-
acteristic geometric structures and dynamic behaviour. In
addition to the general interest in studying such ionic clus-
ters in the context of cluster physics and chemistry, an-
other research motivation is that molecular or atomic ions
surrounded by rare-gas atoms are appropriate models for
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solute-solvent aggregates [2,3]. Finally, to mention a more
practical aspect, these complexes may arise in matrix in-
vestigations of molecular spectroscopy and processes.

Notwithstanding the considerable progress made both
experimentally and theoretically, there is still only rather
limited information available, even for small clusters of
this kind. For medium-sized clusters very few theoretical
studies have been published: several papers have treated
pure cationic rare-gas aggregates, Rg+

n , with n up to 35
(see, e.g., [4–18]) and corresponding protonated systems,
RgnH+, with n up to 7 [5, 19–22], using different ap-
proaches and resulting in partly contradictory findings.
Recently also results of theoretical [23] and experimen-
tal [24] investigations of ArnH+

3 complexes have been re-
ported; the calculations ranged over n = 1–9. Somewhat
more reliable and precise data are available for some small
ionic complexes RgnM+ with different rare-gas atoms Rg,
different diatomics M and n = 1 or 2 (for references see,
e.g., [25]). Almost nothing is known about the dynamics
of such systems.

Because of this situation, systematic and well-founded
investigations are desirable in order to understand struc-
tural, spectroscopic and dynamic properties of such
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clusters, and to make useful predictions which may even
guide one to practical applications. In this vein, we started
a study on simple prototype systems RgnM+ and report
here, in the first part, on the structure and binding of
ArnH+. In order to treat medium-sized clusters with rea-
sonable effort, we choose a minimum basis diatomics-in-
molecules (DIM) model for calculating the potential en-
ergy of interaction and other electronic properties (charge
distribution) as a function of the geometric configuration.

The DIM approach has several important advantages:
it guarantees correct asymptotic behaviour and can treat
not only the electronic ground state but also low-lying ex-
cited states without additional effort. The computational
expense is very low but the method requires extremely
careful preparational work if it is to produce reliable re-
sults. Therefore, we have applied advanced ab-initio tech-
niques to the task of obtaining the necessary input data,
and we have checked the DIM results against refined con-
ventional ab-initio calculations for a few small clusters at
selected geometrical configurations.

The general aim of the project is twofold: firstly, we
hope to provide an improved approach to finding a model
which is able to treat both small and medium-sized molec-
ular aggregates on the same footing in order to extend the
results of the reliable quantum mechanical treatment of
the very small systems to the region where ab-initio cal-
culations are simply not feasible. Secondly, we should like
to contribute to the understanding of structural aspects
of the different-sized clusters, in particular to reveal, if
existent, the building-up principle. Altogether this should
give us the prerequisites for the future treatment of the
dynamics of these clusters.

The procedure has recently been tested for the sim-
ple complex Ar2H+ [26] with encouraging results. In the
present article, we extend our study to medium-sized clus-
ters ArnH+ with n up to more than 30. This is quite easily
done, requiring minimal computational effort, even when
some low-lying excited states are included; moreover, no
new input data for the DIM model is needed over and
above that already available from the work on Ar2H+ [26].
It is in this sense that the model we use here can be con-
sidered to treat all of the clusters on an equal footing.

The paper is organized as follows: in Section 2,
the methodology for the pointwise generation of the
interatomic-interaction potential energy in the conven-
tional ab-initio approach and in the DIM model is briefly
described. Section 3 summarizes the status of knowledge
about the Ar2H+ complex and about the various diatomic
fragments needed in the DIM scheme. It also reports on
the results obtained for the ArnH+ clusters, their struc-
tures and stability, including also some striking regulari-
ties observed. Finally, Section 4 contains the conclusions
and an outlook.

2 Methodology of interatomic-interaction
potential-energy calculation

The theoretical description of the systems under consider-
ation is based on the adiabatic (Born-Oppenheimer) sep-

aration of electronic and nuclear degrees of freedom in
its simplest version in which the potential-energy function
governing the motion of the nuclei is given for each nuclear
arrangement by the sum of the total energy of the electron
cloud plus the total electrostatic nuclear repulsion energy.
The essential problem to deal with is therefore the approx-
imate solution of the electronic Schrödinger equation for
a large set of nuclear configurations; this is done, for the
most part of the paper, by an appropriate DIM model and,
for purposes of cross-checking, by variants of the coupled-
cluster approach (vide infra). In all calculations, the non-
relativistic all-electron fixed-nuclei Hamiltonian in Carte-
sian coordinates is used. Relativistic effects do not play a
role in the present case; in particular, there are no signif-
icant spin-dependent interactions.

A special problem for the larger clusters is to locate the
relevant stationary points on the potential-energy surfaces
(PES): local minima and first-order saddle points corre-
sponding to (electronically) stable structures and tran-
sition configurations, respectively. To this end a Monte-
Carlo procedure was applied to generate stochastically a
large number of nuclear arrangements, each used for start-
ing a steepest-descent optimization to find the nearest sta-
tionary point. Assuming a compact structure of the clus-
ters, in the Monte-Carlo generation of initial geometries
spherical polar coordinates for each atom are used, the
values of which are appropriately connected with random
numbers so as to ensure a homogeneous spatial distribu-
tion of all atomic positions within reasonable limits (e.g.,
no pair distances below 0.5 a0). In order to avoid very large
numbers of start geometries for larger clusters (n > 13 in
the present case), the procedure has been modified so that
not all atomic positions are freely randomly chosen, but
the geometry of a smaller fragment of the cluster is pre-
selected. In the subsequent optimization procedure which
includes all degrees of freedom, Cartesian coordinates are
used for practical reasons.

An overall fit of the PESs to analytic functions is not
necessary because of the very short computational time
needed by the DIM code; each PES point can be calculated
immediately when it is required.

2.1 One-electron atomic basis sets

The elementary building blocks of the wavefunctions in
each of the commonly used methods for solving the elec-
tronic Schrödinger equation are one-electron functions (or-
bitals) represented by linear combinations of appropriate
atomic basis functions, mostly of Gaussian type. Various
basis sets are proposed in the literature, differing in num-
ber and parametrization; we used the aug-cc-pVTZ basis
set of Woon and Dunning [27] which includes, in addi-
tion to the set of Dunning [28], several diffuse functions,
namely 1s, 1p, 1d, 1f for Ar and 1s, 1p, 1d for H. Ac-
cording to our experience [29], this extended basis set (al-
together 75n + 25 functions, contracted to 50n + 23 basis
functions finally used in the calculations for ArnH+) leads
to a good compromise between sufficient flexibility and ac-
ceptable computational effort.
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The incompleteness of any such basis set brings about
a basis-set superposition error (BSSE). Its magnitude was
estimated by the counterpoise method for a number of
selected nuclear configurations of the diatomic fragments
and the smallest complexes; it was found to be of the
same order of magnitude (around 0.05 eV) as the er-
rors from other shortcomings of the conventional ab-initio
treatment, and less than the errors inherent in the DIM
procedure applied (vide infra).

2.2 Conventional ab-initio MO-based
configuration-interaction and coupled-cluster
approaches

In the present study, all calculations of the electronic en-
ergy and wavefunction data of the diatomic fragments as
well as the cross-checking reference data for selected struc-
tures of some polyatomic complexes are performed using
a molecular-orbital (MO) configuration-interaction (CI)
ansatz for the electronic wavefunction, i.e. a linear combi-
nation of a (very large) number of electronic (antisymmet-
ric, spin-adapted) configuration-state functions built up
from molecular orbitals which are represented, for their
part, as linear combinations of the basis functions (vide
supra). In order to generate electronic wavefunctions and
continuous potential-energy curves of balanced accuracy
(in particular with respect to maintaining an adequate
representation of the dominant electronic configurations
and including the essential higher one-electron excita-
tions) over the whole range of internuclear distance for
the diatomic fragments, the necessary flexibility in an un-
avoidably truncated CI function was achieved by using an
internally contracted multi-reference single- and double-
excitation variational configuration-interaction (icMRCI)
procedure including a generalized Davidson correction
for estimating the energetic contributions of higher-order
excitations (icMRCI+Q) [30, 31]. For the single-point
cross-checking calculations, a coupled-cluster approach
with single- and double-excitations (CCSD) [32] was ap-
plied. All of these calculations were carried out with the
MOLPRO suite of ab-initio programs [33].

For generating the best MOs for a given nuclear ar-
rangement, a state-averaged complete active space self-
consistent field (CASSCF) calculation was carried out
prior to the MRCI step of computation. The active space
of the CASSCF, consisting of the valence space plus the
most relevant virtual orbitals, was then taken as the ref-
erence space in the MRCI. The inner-shell orbitals (1s,
2s, and 2p) of the argon atom are kept doubly occupied
during the CASSCF and are treated as a frozen core in
the MRCI and CCSD treatments.

For complexes ArnH+ with n > 2, such ab-initio com-
putations need so many of the resources that they become
less and less feasible (for reasonable effort) as n increases.
A much more economical alternative approach — the DIM
model — is briefly described in the following section.

2.3 The diatomics-in-molecules (DIM) model

In 1963 Ellison [34] proposed a conceptually simple ap-
proach to solving the molecular electronic Schrödinger
equation, based on the fact that the complete nonrela-
tivistic fixed-nuclei Hamiltonian of an arbitrary N -atomic
molecular system can be partitioned exactly into atomic
and diatomic terms as follows:

Ĥ =
N−1∑

a=1

N∑

b=a+1

Ĥab − (N − 2)
N∑

a=1

Ĥa, (1)

where Ĥa contains contributions of atom a only, and Ĥab

includes all contributions from atoms a and b. The idea
of Ellison, further worked out by Tully [35], Kuntz [36]
and others, is to use many-electron wavefunctions for rel-
evant electronic states of the constituent atoms and di-
atomic fragments (in contrast to most conventional meth-
ods which take MOs, i.e. one-electron functions, vide
supra) as building blocks for the wavefunction of the total
system. The latter is then set up in the form of a lin-
ear combination of functions each of which is a product of
wavefunctions for atomic and diatomic fragments (neutral
or ionic) in certain electronic states such that the result-
ing wavefunction belongs to a definite spatial symmetry
and spin multiplicity of the electronic state of the total ag-
gregate. The fragment wavefunctions, for their part, are
thought of as being given by appropriate linear combi-
nations of valence-bond (VB) functions, i.e. spin-adapted
antisymmetric products of atomic orbitals (AOs).

In the present case, ArnH+, if one takes into account
all fragment states leading to singlet states of the whole
complex and lying energetically not more than 10 eV
above the respective fragment ground states, then one has
to deal with the following fragment states:
Ar(1S), Ar+(2P◦), H(2S),
ArH(X2Σ+), ArH+(X1Σ+, 11Π, 21Σ+),
Ar2(X1Σ+

g ), Ar+2 (X2Σ+
u , 12Πg, 12Πu, 12Σ+

g ).
We will call this our “minimal” DIM model since it con-
tains the smallest meaningful amount of fragment infor-
mation. The set of wavefunctions for these states forms
the “DIM basis”.

It should be pointed out here that we restricted our-
selves to this level of sophistication of the DIM approach
in order to keep the computational expense low for calcu-
lating, in a subsequent study of the cluster dynamics, the
PES points “on the fly”.

Employing this wavefunction ansatz and the decompo-
sition (1), the matrix elements of the Hamiltonian reduce
to contributions from the isolated atomic or diatomic frag-
ments in their different electronic states as selected above.
These contributions can, in principle, be taken either from
experimental data or from calculations. We use the latter
way, applying extended conventional ab-initio calculations
as described in the preceding section.

In the DIM approach, the wavefunction is much more
compact (i.e., the linear combination ansatz is much
shorter) compared to the MO-CI wavefunctions. This ad-
vantage, however, is achieved at the expense of extensive



424 The European Physical Journal D

preparational work: (a) the generation of the atomic and
diatomic input data, (b) the conversion of these data into
the form needed in DIM (namely, valence-bond-like wave-
functions), and (c) the composition of the matrix elements
of the many-body Hamiltonian in terms of the 1-body
atomic and the 2-body diatomic Hamiltonian matrix ele-
ments according to formula (1).

The treatment of problem (a) will be briefly described
in the next section. Problem (b) is solved by a projection
procedure, elaborated by Kuntz and Schreiber [37], which
transforms each fragment wavefunction as obtained in
the conventional MO-CI form (by MRCI) approximately
into a single VB function or, if mixing of more than one
VB configuration for the state considered is necessary, a
linear combination of VB functions. It is important to
note again that the MOs (in the MO configurations) and
the AOs (in the VB configurations) are both represented
as linear combinations of one and the same basis set (aug-
cc-pVTZ in our case). We will not go further into details
but mention only that this projection procedure requires
merely the evaluation of determinants containing elements
of the matrix of MO coefficients as obtained in the forego-
ing conventional ab-initio procedure. In this way we avoid
carrying out independent expensive VB calculations for
the diatomic fragment states as done in a large part of
DIM work in the past. The step (c), including some ap-
proximations (in particular, neglect of overlap terms), is
automatically executed in the DIM program code.

3 Results and discussion

3.1 Diatomic fragments

In order to provide the input data (the parametriza-
tion) for the DIM model described above, and to gain
some insight into the relevant interatomic interactions in
protonated argon clusters, we calculated the interaction
potential-energy curves and electronic wavefunctions of
the diatomic fragments in their lower electronic states
(vide supra). Likewise, the electronic energies of the free
atoms resp. ions, as far as included in the DIM basis, were
determined. All this has been done by the ab-initio MRCI
approach as specified in Section 2.2 above; the results for
the potential-energy curves are given in Figures 1a–1d (see
also [26, 29]).

For the electronic ground states of all four diatomic
fragments, the electronic structure and binding properties
are well known. The two ionic fragments, ArH+ and Ar+2
(Figs. 1a and 1b) are firmly bound in their ground states
with (electronic) dissociation energies De of 4.17 eV and
1.32 eV, respectively. The corresponding bond lengths re

at the potential minimum are 2.42 a0 and 4.58 a0, and the
harmonic vibrational frequencies ωe amount to 2735 cm−1

and 300 cm−1, respectively. All low-lying excited states
considered are repulsive, as are the electronic ground
states of the two neutral diatomic fragments, ArH and
Ar2. The repulsive states each exhibit some very weak
long-range van-der-Waals attraction; the corresponding
electronic binding energies are as low as a few meV: for

Fig. 1. Potential-energy curves for the relevant diatomic frag-
ment states in the “minimal” DIM model: (a) ArH, (b) ArH+,
(c) Ar2, (d) Ar+2 (taken from [26]).

Fig. 2. VB configuration
mixing ratio, c1/c2 = tan(β)
where c1 and c2 are normal-
ized coefficients of the ground
and lowest excited 1Σ+ states
of ArH+, respectively, in de-
pendence on the internuclear
distance (taken from [26]).

example, 3.9 meV in the case of ArH and 9.7 meV for Ar2
(without BSSE correction), and the interatomic distances
at which the van-der-Waals minima appear, are 6.86 a0 for
ArH and 7.29 a0 for Ar2. All these diatomic fragment re-
sults compare well with experimental and theoretical data
from the literature (see [29]).

In a VB-type approximate description, for the present
selection of states, there occurs a mixing of the two 1Σ+

states of the fragment ArH+; this must be taken into ac-
count in the DIM model. The mixing coefficient of the
two VB configurations as obtained by the projection pro-
cedure mentioned above, is shown in Figure 2. This result
is very similar to earlier published findings (compare [38]).
All the diatomic fragment data (interatomic potential en-
ergy including van-der-Waals bumps, mixing coefficient)
as functions of the interatomic distance are carefully fit-
ted to analytic (or spline) functions and used in this form
as DIM input. The details will not be given here1.

1 More information can be obtained on request from one of
the authors by e-mail: ritschel@chem.uni-potsdam.de
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Table 1. Ground-state molecular characteristics of the most stable ArnH+ cluster structures; upper line: CCSDa results, lower
line: DIM results.

Symmetry/ Eb
B ZPEc rd

1 rd
2 rd

3 αd qe
H qe

1 qe
2

n Ground state eV eV a0 a0 a0 deg a.u. a.u. a.u.

2 D∞h/1Σ+
g −4.73 0.162 2.84 – – 180 0.328 0.336 –

−4.57 0.164 2.76 – – 180 0.635 0.182 –

3 C2v/1A1 −4.81 0.166 2.84 6.13 – 178.3 0.343 0.326 0.005

−4.65 0.167 2.77 5.97 – 176.1 0.635 0.182 0.001

4 C2v/1A1 −4.89 0.171 2.84 6.12 7.50 177.3 0.364 0.314 0.004

−4.75 0.172 2.77 5.93 7.27 173.6 0.636 0.181 0.001

5 C2v/1A1 −4.98 2.84 6.17 7.48 177.5 0.384 0.304 0.004

−4.84 0.177 2.77 6.05 7.25 174.0 0.635 0.181 0.001

6 C2v/1A1 −5.06 2.84 6.20 7.51 178.7 0.397 0.297 0.004

−4.93 0.181 2.78 6.14 7.29 176.4 0.635 0.181 0.001

7 D5h/1A′
1 −5.15 2.84 6.22 7.32 180 0.415 0.290 0.001

−5.03 0.188 2.78 6.12 7.20 180 0.635 0.181 0.001

a For saving computer time, complete CCSD calculations have been carried out only for n = 2–4. b Binding energy: total energy
relative to nAr + H+. c Zero-point energy from harmonic frequencies. d Geometry: r1 distance proton–Ar in the inner Ar2H

+

fragment, r2 distance proton–first ring Ar, r3 distance first–second ring Ar, α bending angle of inner (Ar–H–Ar)+ fragment.
e Mulliken atomic charges: qH - proton, q1 - Ar atom of the inner Ar2H

+ fragment, q2 - first ring Ar atom (given are CISD data
since CCSD charges cannot be calculated with MOLPRO).

3.2 The Ar2H+ complex

If not otherwise stated, we use Jacobi coordinates for
defining the geometry of the triatomic complex Ar2H+:
the Ar–Ar distance r, the distance R of the proton from
the center of mass of the Ar–Ar pair, and the angle θ
between the vectors R and r (see insert in Fig. 3b).

3.2.1 Electronic ground state of Ar2H
+

As the starting stage of the present study, an extensive in-
vestigation of the simplest ArnH+ complex, namely that
with n = 2 in its electronic ground state, has been un-
dertaken. For detailed information we refer to our recent
paper [26] and give a brief summary here. Some data are
collected in the upper two rows of Table 1.

In both the CCSD and the DIM approaches, the PES
for the electronic ground state of Ar2H+ exhibits two local
minima: one (Min1) for a centro-symmetric linear com-
plex (Ar–H–Ar)+, i.e. D∞h symmetry, and one (Min2)
for another linear arrangement (Ar–Ar–H)+, i.e. C∞v

symmetry. Whereas the former is firmly bound by elec-
trostatic and three-center covalent forces, the latter is
only weakly stabilized by electrostatic interaction between
one Ar atom and the ArH+ molecular ion. These two local
minima are separated by a saddle-point in a bent nuclear
arrangement. The deeper minimum is clearly seen in the
PES contour-line diagram given in Figure 3a. Even taking
into account the zero-point vibrations, the two structures
are still lower in energy than the fragmentation limit, but
the barrier between them becomes nearly zero so that the
weakly bound complex (Min2) will not play any signifi-
cant role in the dynamics of the system. The qualitative

Fig. 3. DIM contour-line diagrams of the potential-energy
functions U(r, R) for the ground state and the first three ex-
cited states of Ar2H

+ in C2v symmetry: 11A1, 11B2, 21B2,
and 11A2, respectively. The broken lines in the diagrams a and b
indicate the crossing of the two lowest electronic PESs, 11A1

and 11B2.

similarity of the DIM and CCSD results provides a first
justification for extending DIM to the study of larger com-
plexes.
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Fig. 4. DIM potential-energy curves U(r) for the seven low-
est electronic states of Ar2H

+ in C2v symmetry, keeping the
distance R fixed at 6.0 a0.

Our findings confirm those in the literature which pre-
dict a centro-symmetric linear complex Ar2H+ as the most
stable structure. There is no indication of a bent complex
(as noticed in [22]) or of an asymmetric linear arrangement
(Ar–H· · ·Ar)+ with an ArH+ core [21].

3.2.2 Low-lying excited states of Ar2H
+

DIM can easily generate potential-energy surfaces for
those excited states arising from the chosen basis. No ad-
ditional input data or preparation is required, so that a
certain number (depending on the basis-set dimension) of
low-lying excited electronic states are available for free. In
Figures 3a–3d the contour-line diagrams for the potential-
energy functions U(r, R) of the four lowest states are
shown, keeping the Jacobi angle θ fixed at 90◦ (i.e., C2v

symmetry). Closer inspection and comparison of these pic-
tures reveals the following interesting features, in addition
to those already mentioned in the discussion of the elec-
tronic ground state: (i) all three excited states considered
(we note: also the next higher ones) are clearly repulsive in
the region vertically above the deeper minimum (Min1) of
the ground-state PES. This is because the energy required
to transfer electronic charge from Ar to the proton (the
difference between the fragmentation limits Ar + Ar+ + H
and Ar + Ar + H+ is about 2 eV) is not compensated by
any attraction in the ArH+ fragments. Indeed, one pays a
large penalty in the form of repulsion between Ar+ and H
(see the excited-state curves in Fig. 1b); hence, there is an
overall loss of attraction in the whole system. (ii) As can
be seen from Figures 3a and 3b, the PESs of the two lowest
electronic states cross in C2v-symmetric nuclear configu-
rations (but avoid crossing in general geometries, because
both states then belong to the same symmetry species A′).
The crossing is prominent in a region roughly defined by
r < 5 a0, R > 3 a0 and θ ≈ 90◦, as is further illustrated
by Figure 4 representing a cut through the PESs for the
seven lowest electronic states, laid one upon the other,
keeping θ = 90◦ and R = 6.0 a0 fixed. For Ar–Ar dis-

Fig. 5. DIM potential-energy curves U ′(R) for elongation of
the Ar2–H distance R in the seven lowest electronic states of
Ar2H

+, maintaining C2v symmetry and optimizing the dis-
tance r for the electronic ground state.

tances r > 4.5 a0, the ground state has A1 character, for
r < 4.5 a0 it has B2 character. (iii) In each of these excited
states, the PES may exhibit at least one shallow van-der-
Waals well. For the first excited state, this well is largely
obscured by the crossing seam; in the other two excited
states shown in Figure 3, such wells are evident from the
diagrams.

These special features of the PESs have obvious conse-
quences: The repulsive nature of the excited states consid-
ered determines the behaviour of the Ar2H+ complex on
photoexcitation. If the ground-state complex in its most
stable structure is brought to one of these excited states, it
will break up into ground-state atomic fragments. As far
as excitation to the first excited state is concerned, the
PES crossing may lead to a branching of the fragmenta-
tion channel into two: Ar(1S) + Ar+(2P◦) + H(2S), proba-
bly dominant, and 2Ar(1S) + H+. The possible existence
of electronically excited stable van-der-Waals complexes
will not be pursued further because of the uncertainties of
the calculated data (well depths and forms, correspond-
ing zero-point energies) as calculated by the present DIM
approach. What can be said, however, is that because of
the large energy content of the complex after excitation,
such van-der-Waals wells will not significantly affect the
photofragmentation processes.

In order to get an overall picture of the electronic term
structure relevant to the photoexcitation, potential-energy
curves are shown in Figure 5 for the removal of the proton
or, alternatively, the H atom, from the complex Ar2H+ in
the lowest seven electronic states, maintaining C2v sym-
metry and optimizing the Ar–Ar distance r in the elec-
tronic ground states at each value of R. Table 2 gives
the electronic vertical spectrum, i.e. the electronic term
energies relative to the bottom of the deepest ground-
state potential well (most stable structure of the complex)
as obtained from DIM and MRCI calculations, and also
the transition-dipole matrix elements (TDME) computed
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Table 2. Electronic vertical spectrum of Ar2H
+ for excitation

from the ground-state most stable structure (X1Σ+
g , Min1); up-

per line: MRCI+Q results, lower line: DIM results (in parenthe-
ses: symmetry of the correlating states for C2v/Cs geometry).

state ∆Ua |TDME|b
eV a.u.

X1Σ+
g (1A1/

1A′) 0.0 –

ground state 0.0 –

11Πg (1B2 + 1A2/
1A′ + 1A′′) 11.45 0.0

first excited state 11.42

11Πu (1B1 + 1A1/
1A′ + 1A′′) 11.81 0.05

second excited state 11.76

11Σ+
u (1B2/

1A′) 12.39 2.20

third excited state 9.95

21Σ+
g (1A1/

1A′) 16.32 0.0

fourth excited state 18.48

a Vertical excitation energy. b Transition-dipole matrix ele-
ment, for MRCI only.

with MRCI2. The DIM excitation energies are mostly in
qualitative accordance with the MRCI results, except for
the 11Σ+

u state, which is above the two Π states for MRCI,
and below for DIM. (We note here that in MRCI this state
comes down somewhat as soon as the complex is bent
and R increases; the discrepancy is then significantly re-
duced.) From the TDME data it follows that photoexcita-
tion and, therefore, photofragmentation is effective mainly
with the state 1Σ+

u .

3.3 Structure and stability of medium-sized clusters
ArnH+ (n > 2)

If the necessary input data are available, the DIM pro-
cedure can be easily extended to larger ArnH+ com-
plexes; the computational effort is essentially determined
by the diagonalization of the resulting (3n+1)-dimensional
Hamiltonian matrix. We performed calculations up to
n = 35. An increasingly time-consuming problem is the
minimum search on the PESs for relatively large numbers
of nuclear degrees of freedom and, correspondingly, large
numbers of local minima. As mentioned at the beginning
of Section 2, we applied a Monte-Carlo sampling of the rel-
evant parts of the nuclear configuration space for initial
choice of the structure, followed by a steepest-descent op-
timization procedure. If the number of such Monte-Carlo
geometries is large enough to allow a sufficiently dense
sampling of all essential parts of the potential-energy hy-
persurface (for medium-sized clusters this can easily re-
quire several thousand configurations), one can be sure to
have discovered all important stationary points. In this

2 Since the DIM approach does not employ wavefunctions
explicitly, it does not allow for the determination of molecular
properties such as TDMEs without much ado.

way we found in each case not only the (electronically)
most stable structure of the cluster (global minimum of
the PES) but also some less stable secondary structures.
Furthermore the harmonic frequencies have been obtained
as well.

For the global minima of the smaller clusters with
n = 2 (see preceding Section) up to n = 7 in their elec-
tronic ground states, starting from the DIM-optimized ge-
ometry, the optimization was repeated using the CCSD
ab-initio approach, likewise (for n = 2–4) with determi-
nation of the harmonic frequencies, in order to check the
minimum character of the stationary point and to estimate
the zero-point energy (ZPE). In addition, to get some in-
dication of the binding situation, the charge distribution
is characterized by Mulliken atomic charges. The data ob-
tained are used to extract the prominent regularities seen
in building up the most stable cluster structures succes-
sively with increasing n.

The section ends with some remarks on the lowest elec-
tronically excited states of the clusters.

3.3.1 Electronic ground states: Building-up principle
and increment scheme

A collection of structural and energetic data for the most
stable nuclear arrangements of ArnH+ clusters with n =
2–7 in the electronic ground state appears in Table 1. The
first interesting feature is the qualitatively good agree-
ment of the DIM with the CCSD results for energetic
and geometric-structure properties; this supports our con-
cept for extending the DIM description further to clus-
ter sizes which are not tractable by advanced ab-initio
methods with reasonable effort. A marked discrepancy is
observed for the atomic charges: DIM overestimates the
charge on the proton but underestimates the charges on
the Ar atoms (whereby practically all Ar atoms other than
those of the Ar2H+ core are electrically neutral).

The most stable DIM structures of clusters with
n = 2–35 are schematically drawn in Figure 6. One can
see clearly that the successive formation of the clus-
ters by adding one further Ar atom follows a simple
building-up principle: beginning stepwise from Ar2H+,
which is left essentially unchanged, a five-membered ring
is formed in the equatorial plane (perpendicular to the
Ar–H–Ar axis). When this ring is completed resulting in
a symmetrical Ar7H+ structure a second five-membered
ring is started on one of the two equivalent ends. After
reaching the Ar12H+ structure, the most favourable place
for an additional Ar atom is the “cap” position, not the
position of a ring member on the other side. Only with Ar
atom no. 14 is the formation of the next ring at the other
end of the (Ar–H–Ar)+ core initiated. Again the ring clo-
sure is followed by putting on the Ar “cap atom” no. 19.
The cluster now looks like a “roller” made up of an axel
with three wheels, the two outside wheels having hubcaps.
By the way, the structures with n = 7, 12, 13, 18, and 19
agree with those obtained by using the van-der-Waals radii
of Ar for finding the most stable clusters.
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Fig. 6. The most stable ArnH+ cluster structures with n = 2–35 as obtained with the DIM model, each in side view facing the
(ArHAr)+ core (left part) and end-on view along the (ArHAr)+ axis (right part).
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Fig. 7. The most stable and three less stable structures of the
cluster Ar5H

+, corresponding to secondary local minima on
the ground-state PES. Two of the latter show clearly an ArH+

core fragment with the Ar atom carrying a larger amount of
charge (q1 = 0.32 e with DIM).

From n = 20 onwards, extended “roller” clusters
(made by adding extra 5-atom wheels to the axel) should
exist as electronically stable aggregates, but they are no
longer the most stable. Rather, a second shell of Ar atoms
is built up, forming a 15-atom “tyre” around the 19-atom
“roller”, resulting in a complete “roller-with-tyre” cluster
at n = 34. Let us consider this construction somewhat
further in detail by inspecting the lower part of Figure 6.
In a second shell around the central part again three five-
membered rings are formed but now in a more compli-
cated way. At first two neighbouring positions in the cen-
tral equatorial plane are occupied (n = 20 and 21); this is
to be expected because of the dominant inductive attrac-
tion forces exerted here by the core fragment. The follow-
ing two Ar atoms (n = 22 and 23), however, are placed in
the positions next to the former two on both sides (oppo-
site on the gap), thus starting two new rings. In this way
the procedure is continued: one Ar atom into the central
ring next to the Ar atoms already present there, then two
Ar atoms into the other two rings, one into each of them
(n = 24–26, 27–29, and 30–32; now, the central ring is
filled), and finally one Ar atom on each side to complete
also the other two rings (n = 33 and 34). The Ar atom
no. 35 finds its position in the shortest possible distance
to the core fragment, near to one of the cap atoms of
the n = 19 cluster. Presumably here another ring will be
built up.

Without pursuing this cluster formation sequence to
even larger numbers of Ar atoms, a progressively com-
plicated competition of various imaginable, energetically
nearly equivalent structures is to be expected in each case.
In fact, for all clusters, a statistical mixture of such differ-
ent cluster structures should exist, each structure corre-
sponding to a local minimum on the PES. Some of these
are shown in Figure 7 for the Ar5H+ aggregate. Here one
observes, as in several other secondary structures, that
the diatomic fragment ArH+ can play the role of the core
fragment.

The simple building-up procedure just described sug-
gests that a correspondingly simple regularity should hold
for the dependence of the energetic characteristics on the

Fig. 8. Energetic characteristics of ArnH+ clusters (most sta-
ble structures) as function of n: (a) total binding energy, EB,
(b) binding energy of the last added Ar atom, ∆E.

number n of Ar atoms. In Figures 8a and 8b graphs of the
total binding (atomization) energy EB,

EB(n) = E(ArnH+) − nE(Ar), (2)

and the binding energy of the last added Ar atom (no. n)
to the foregoing cluster Arn−1H+ (the “evaporation en-
ergy”),

∆E(n) = E(ArnH+) − E(Arn−1H+)
= EB(n) − EB(n − 1), (3)

as functions of n are shown. For n = 2–7 the DIM re-
sults are compared with the CCSD data. As can be seen,
our DIM model systematically underestimates the abso-
lute value of EB and overestimates the amount of ∆E,
but the tendency is remarkably well represented so that
we again conclude that DIM can describe the cluster struc-
tures at least qualitatively correctly.

From Figure 8b, the “magic numbers” n = 7, 13,
and 19, at which the rings (for n = 13 and 19 including the
“caps”) are complete and the clusters become most stable,
are clearly discernible. Also for n > 19 we find some kind
of “magic numbers”, namely n = 23, 26, 29, 32, and 34.
Possibly, beyond n = 34 this behaviour will change again.

The energetic regularities illustrated by Figures 8a
and 8b result from the fact that, roughly speaking,
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Table 3. Binding energy of ArnH+ clusters with “roller-
shaped” structure: comparison of the data from the additive
increment scheme described in the text with those calculated
individually by the DIM approach.

n DIM Increment scheme ν1 ν2 ν3 ν4

eV eV

2 −4.566 −4.566

3 −4.651 −4.651 1

4 −4.746 −4.746 2 1

5 −4.839 −4.841 3 2

6 −4.932 −4.936 4 3

7 −5.034 −5.042 5 5

8 −5.098 −5.104 5 1 7

9 −5.172 −5.178 5 2 10

10 −5.247 −5.251 5 3 13

11 −5.323 −5.324 5 4 16

12 −5.407 −5.408 5 5 20

13 −5.498 −5.498 5 5 25 1

14 −5.560 −5.561 5 6 27 1

15 −5.632 −5.634 5 7 30 1

16 −5.706 −5.707 5 8 33 1

17 −5.781 −5.780 5 9 36 1

18 −5.863 −5.864 5 10 40 1

19 −5.950 −5.954 5 10 45 2

the interactions between an Ar atom and the rest of the
cluster are of only two types, namely inductive (with the
charged core atoms) and dispersive (with the other Ar
atoms) showing additivity to a large extent. Thus it should
be possible to formulate a simple increment scheme for
the clusters as long as they obey a common building-up
principle. To give an example, for n = 3–19 the binding
energy (2) of the most stable structures can be adequately
given by the following formula:

EB(n) = Ecore + ν1(n)δE1 + ν2(n)δE2

+ ν3(n)δE3 + ν4(n)δE4. (4)

Here ν1 denotes the number of Ar atoms in the “cen-
tral ring” (which is completed in Ar7H+), ν2 the num-
ber of Ar atoms in the two “side rings”, ν3 the number of
nearest-neighbour Ar–Ar pairs within the rings, and ν4 the
number of “cap” Ar atoms. The parameters (energy incre-
ments) as determined from the DIM energies for the most
stable structures with n = 2, 3, 4, 12, and 13 (see Tab. 1),
have the following values: Ecore = −4.5663 eV, δE1 =
−0.0847 eV, δE2 = −0.0422 eV, δE3 = −0.0103 eV, and
δE4 = −0.0387 eV.

Using these parameters, the EB for a given cluster
with n Ar atoms is easily found by counting the num-
bers of the relevant interactions taken into consideration
by the model chosen and summing up the corresponding
energy contributions. As Table 3 shows, the results ob-
tained agree very accurately with the data calculated by
the DIM model; if we compare with Table 1, this holds also
for the CCSD values. The trends in the energetic char-
acteristics of Figures 8a and 8b are reproduced as well.
It should be noted that, in our example, the increment

Table 4. Electronic vertical spectrum of ArnH+ clusters with
n = 3–13 Ar atoms, for transitions from the most stable
ground-state structures (DIM results) to the lowest five ex-
cited states.

n first (1) second (2) third (3) fourth (4) fifth (5)

eV eV eV eV eV

2 9.950 11.420 11.420 11.764 11.764

3 9.938 10.278 10.395 10.435 11.405

4 9.924 10.205 10.304 10.346 10.387

5 9.918 10.213 10.237 10.334 10.405

6 9.916 10.244 10.271 10.309 10.372

7 9.915 10.271 10.271 10.275 10.347

8 9.895 10.270 10.271 10.293 10.350

9 9.880 10.267 10.273 10.295 10.339

10 9.869 10.270 10.284 10.289 10.339

11 9.859 10.281 10.284 10.294 10.351

12 9.858 10.269 10.286 10.286 10.343

13 9.824 10.269 10.276 10.276 10.307

scheme has been parametrized employing only a small part
of the available data, thus demonstrating its predictive
power within the given structural model.

The less stable secondary structures mentioned above
show marked differences to the most stable ones, but this
behaviour will not be investigated further here.

It should be pointed out that the discussion in this
section has focussed on the electronic stability of the ag-
gregates. If we take into account the zero-point vibrations
(for n = 2–7 estimated data are given in Tab. 1), the struc-
tures considered remain stable against fragmentation of
any kind (e.g. break-up into smaller complexes, splitting-
off of an argon atom), since the energy gained from adding
an argon atom is considerably larger than the destabi-
lization by the concomitant zero-point vibrational-energy
contribution.

Finally we mention that the most stable protonated Ar
clusters ArnH+ exhibit remarkable structural analogies to
the purely neutral counterparts Arn with the same n. We
calculated the Arn structures on the same level of DIM as
in the present study, i.e. with the Ar and Ar2 data men-
tioned in Sections 2.3 and 3.1. Considering the smaller ag-
gregates, the only exception is observed for n = 6: whereas
Ar6H+ forms a pentagonal bipyramid with one missing
corner (see Fig. 6), Ar6 has octahedral structure (com-
pare, e.g., also [39]).

3.3.2 Low-lying excited states of ArnH+ (n > 2)

The low-energy part of the electronic term structure of
medium-sized clusters ArnH+ should, to a large extent, be
similar to that found for the Ar2H+ complex (vide supra).
Within the framework of the present study, it is not pos-
sible to pursue this in all detail. We show only some data
which support the above-mentioned assumption. Table 4
(in extension to Tab. 2) gives for the clusters with n = 3–
13 the vertical electronic excitation energies from the most
stable ground-state configuration to the lowest five excited
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Fig. 9. Vertical transition energies from the electronic ground
state (most stable structure) of ArnH+ clusters (a) to the first
excited state (longest-wave transition), (b) to the higher ex-
cited states up, in dependence on n.

states, calculated by means of the DIM approach. In Fig-
ures 9a and 9b the DIM vertical transition energies from
the global minimum of the ground-states PES to the low-
est five excited states are shown in their dependence on the
cluster size (n). For the longest-wave transition (Fig. 9a),
the points on the graph are, with the exception of the point
for 12 Ar atoms, monotone decreasing over the range of
n considered, whereas for the transitions to the higher ex-
cited states the vertical excitation energies tend to nearly
constant values.

For the excited electronic states considered here, the
asymptotic atomization limit is (n−1)Ar(1S) + Ar+(2P◦)
+ H(2S). The energy of the cluster after vertical excitation
is in any case significantly higher than this asymptotic
limit so that the result of photoexcitation can only be the
complete fragmentation (atomization) of the cluster, as in
the case of Ar2H+ already discussed in Section 3.2.2.

4 Conclusions and outlook

Based on the encouraging results for the Ar2H+ com-
plex, the present article extends the study of the struc-
ture and binding to medium-sized clusters ArnH+ using
for the most part the diatomics-in-molecules (DIM) ap-

proach, which provides a uniform treatment of aggregates
of all sizes, yielding information not only for the electronic
ground state but also for some low-lying excited states.
The methodical focus of the study is, on the one hand,
to use the simplest meaningful DIM variant which can
be justified by cross-checking with advanced conventional
ab-initio calculcations for the smaller members (n = 2–7)
of this class of clusters. On the other hand, the input data
for this minimum DIM variant are very carefully prepared
by accurate ab-initio computations of the diatomic frag-
ments and application of a projection procedure.

The main findings can be summarized as follows:

1. comparison of the DIM results for the smaller clusters
(n = 2, . . . , 7) with coupled cluster ab-initio calcula-
tions shows that our “minimal” DIM model is able to
describe adequately the geometry of the structures (at
least the most stable ones) and the energetic relations
between them. This increases our confidence that we
have determined the relevant structures for the larger
clusters as well;

2. analysis of the calculated structural and energetic
data for the medium-sized ArnH+ clusters reveals a
building-up principle expressible as a simple relation
between the energy of the most stable structure of each
cluster and the cluster size, n; the parameters of this
“increment scheme” succinctly encapsulate the DIM
results, reproducing very accurately the results of the
direct theoretical calculations;

3. the low-lying excited states calculated in the DIM
approach are all globally repulsive, suggesting that
photoexcitation processes should always lead to com-
plete fragmentation (atomization). Clearly, the possi-
ble presence of shallow van-der-Waals minima in the
excited-state potential-energy hypersurfaces (PESs)
would be incapable of hindering this fragmentation.

The success of the “minimal” DIM model in describing the
structural and energetic characteristics of medium-sized
ArnH+ clusters, together with the practical advantages of
DIM, namely the much faster computation of PES points
compared to all suitable conventional quantum-chemical
methods, make the DIM model here ideal for generat-
ing plenty of PES data necessary for dynamical studies
of processes involving the electronic ground state or ex-
cited states or both. We are planning further work in this
direction.
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